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Inferring universals from grammatical
variation: Multidimensional scaling
for typological analysis

WILLIAM CROFT and KEITH T. POOLE

Abstract

A fundamental fact about grammatical structure is that ¥t is highly variable both
across languages and within languages. T) ypological analysis has drawn language
universals from grammatical variation, in particular by using the semantic map
model, But the semantic map model, while theoretically well-motivated in typology,
is not mathematically well-defined or computationally tractable, maling it impossi-
ble to use with large and highly variable crosslinguistic datasets. Multidimensional
scaling (MDS), in particular the Optimal Classification nonparametric unfolding
algorithm, offers a powerful, formalized tool that allows linguists to infer language
universals from highly complex and large-scale datasets. We compare our approach
to Haspelmath's semantic map analysis of indefinite pronouns, and reanalyze Dahl’s
(1985) large tense-aspect dataset. MDS works best with large datasets, demon-
strating the centrality of grammatical variation in inferring language universals and
the importance of examining as wide g range of grammatical behavior as possible
both within and across languages.

1. Introduction

A fundamental fact about grammatical structure is that it is highly vari-
able both across languages and within languages. The variation we are re-
ferring to is not soctolinguistic variation, but variation in the conventions
of a language, that is, the conventional grammatical structures used by a
community of speakers to describe a particular situation. Conventional
variation is most obviously manifested in crosslinguistic variation: differ-
ent languages conventionally employ different grammatical structures to
describe the same situation. There is a high degree of variation in gram-
matical distribution patterns within languages as well. This observation
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2 William Croft and Keith T. Poole

dates back at least to the American structuralists (Bloomtfield 1933; 269;
Harris 1946: 177, 1951: 244), and a similar conclusion was drawn by
Gross in a large-scale analysis of French grammatical distribution pat-
terns {Gross 1979: 859-60).

Typeological linguistic theory analyzes crosslinguistic variation and de-
rives universals of grammar from that variation (Greenberg 1963/1990).
A number of techniques have been developed to analyze cross-linguistic
variation and represent grammatical universals. Typological analysis in
fact combines within-language variation and crosslinguistic variation
(Croft 2001: 107). For example, Keenan and Comrie’s classic work on
the accessibility or grammatical relations hierarchy (Keenan and Comrie
1977) examines variation in relative clause constructions depending on
the grammatical relation being relativized. Their data includes variation
within a language as to what relative clause construction is used for each
grammatical relation as well as variation across languages.

In the past decade, a method of representing language universals, the
semantic map model, has come to be used widely in typological analysis.
The semantic map model (see §2) describes distributional variation in
terms of a semantic map for a grammatical form — word, morpheme or
construction - onto a conceptual space representing the situations conven-
tionally encoded by the form. The semantic map model allows one to cap-
ture the great variation in grammatical categories and simultaneously
capture the universals underlying the diversity. The semantic map model
also allows one to link crosslinguistic universals to a model of the represen-
tation of grammar in a speaker’s mind. The semantic map model promises
the integration of typological universals with grammatical representation.

However, the semantic map model suffers from some serious method-
ological problems that impair its use across a wider range of grammatical
phenomena. Fortunately, a mathematically well-understood. and compu-

tationally tractable technique, multidimensional scaling (MDS), has long
been used in related disciplines, in the same way as the semantic map
model is used to uncover typological universals. In §$3-6, we. describe
how MDS, specifically the nonparametric binary unfolding model (Poole
2000, 2005), can be used in place of the semantic map model, apply it to a
iarge dataset of tense-aspect constructions, and draw some general con-
clusions about the nature of language universals, linguistic relativity and
language acquisition.
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2. The semantic map model

The SEMANTIC MAP MODEL was first developed for cross-linguistic analysis
by Lloyd B. Andersen (1974, 1982, 1986, 1987) and then applied by ty-
pologists to a variety of crosslinguistic data (Croft, Shyldkrot & Keminer
1987; Kemmer 1993; Stassen [997; Haspelmath 1997a,b, 2003; van der
Auwera & Plungian 1998; Croft 2001, 2003; see also Bowerman 1996;
Bowerman & Choi 2001). The semantic map model is in effect a general-
ization of the use of grammatical hierarchies in typological theory z.w-
ferred to in §1 beyond a simple linear structure (e.g., Keenan and Comrie
1977; see Croft 2003, ch. 5). We will explicate the semantic map model
using Haspelmath’s 1997a study of indefinite pronouns. A,.rm term nmzn._om-
nite pronoun’ is used broadly by Haspelmath, covering zEm.Eo;.oEEm_
functions or meanings: specific known, specific unknown, irrealis zos-
specific, question, conditional, indirect negation, comparative, m.a.m.oro_om
and direct negation (see Haspelmath 1997a: 31-46 for the definitions of
these functions). . . .

Haspelmath conducted a forty-language study in which he observed
that different languages mapped their indefinite pronoun forms onto the
nine functions in quite different ways, so that no universal Eamm.szn pro-
noun categories could be validly established. However, the mapping of in-
definite pronouns onto their functions is tightly constrained. Haspelmath
uses the semantic map model to represent those constraints. Em.mw.o:sm%
argues that the indefinite pronoun functions should be arranged in a CoN-
CEPTUAL SPACE as in Figure 1:

. indirect direct
question negation negation -
specific specific irrealis _
known unknown nonspecific - ) free
conditional comparative choice

Figure |. Conceptual space for indefinite pronoun fimctions

The conceptual space is a graph structure of nodes representing functions
and links representing relations between functions.

The indefinite pronoun categories of any language can be mapped oH.;o
the conceptual space in Figure 1. A semantic map of a language-specific
category is a bounded area grouping together functions expressed by a
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single form or construction in a particular langnage. For example, the
distribution of the four Romanian indefinite pronoun series across the
nine functions is given in the table in (1) (Y = the indefinite series is
used for the function, N = it is not used for the function}:

{1) Romanian indefinite pronouns:

va- Vie- -un ori- Ri-
Specific known Y N N N
Specific unknown Y N N N
Irrealis nonspecific 'Y N N N
Question Y Y N N
Conditional Y Y N N
Comparative N N Y N
Free choice N N Y N
Indirect negation N Y N Y
Direct negation N N N Y

The Romanian indefinite pronoun distribution is mapped onto the con-

ceptual space for indefinite pronouns in Figure 2 (Haspelmath 1997a
264-65):;

vFe- ~un
ni-
R indirec i
question o —f— direct
y B L negation negation
specific specific irrealis i
known unknown nonspecific i
™ conditional comparative free
va choice
ori-

Figure 2. Semantic maps of Romanian indefinite Dronauns

Possible semantic maps are constrained by. the following principle,
named the Semantic Map Connectivity Hypothesis: ‘any relevant
language-specific and/or construction-specific category should map onto
4 CONNECTED REGION in conceptual space’ (Croft 2001: 96) — more pre-
o_.mn_w._ a connected subgraph. For example, the Romanian vre- -un indefi-
nite pronoun series is used for conditional, question and indirect negation
meanings, and those meanings form a single connected region in the
space of indefinite pronoun meanings,
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The Semantic Map Connectivity Hypothesis represents the principle
underlying the construction of the conceptual space. The conceptual
space is constructed empirically, through cross-linguistic comparison
{Haspelmath 2003: 216-17). A range of functions expressed by a certain
class of language-specific categories (such as indefinite pronouns) is ar-
ranged and rearranged in a single graph structure so that for the sample
of languages under investigation, all of the language-specific grammatical
forms satisfy the Semantic Map Connectivity Hypothesis for that one
graph structure. If there is an underlying universal pattern of relation-
ships to be captured, a single graph structure will emerge, as in Figure 1.
The graph structure represented by the conceptual space is thus derived

from the cross-linguistic data without prior assumptions about the seman-

tic and/or pragmatic properties that determine the relations in the graph
structure of the conceptual space,

The graph structure of the conceptual space forms the starting point for
an explanation for the structure of the space and hence the langnage uni-
versals that are determined by it. The essential principle is that the use of
a single grammatical form (morpheme, word or construction) for a set of
functions imiplies that speakers conceptualize those functions as similar
or relaied to one another. Categories defined by different grammatical
forms within or across languages capture different similarities among a
set of functions, but if we examine all languages at once, a single similar-
ity space {(graph)} may emerge.

The semantic map model has a number of important theoretical prop-
erties, which have led to its widespread use among typologists. The graph
structure of the conceptual space represents language-universal structure,
namely the relations among the meanings or functions. The mapping of
particular grammatical categories and constructions onto the conceptual
space is language-specific. Thus, the semantic map model offers a clear di-
vision between what is universal and what is language-specific. The se-
mantic map model also provides an account of paths of grammatical
change and extension: grammatical categories and constructions will be
extended diachronically to new functions following the links in the graph
structure representing the conceptual space.

The semantic map model also offers a means to integrate empirically
established crosslinguistic universals with the grammatical representa-
tion of individual speakers. The conceptual space is hypothesized-to be a
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universal conceptual structure in the minds of human beings (Croft 2003:
138-39). A significant part of grammatical representation is the mapping
of particular grammatical forms onto the conceptual space. The mapping
is language-specific, and thus must be learned by the child; but the learn-
ing process is constrained by the structure of the conceptual space and the
Semantic Map Connectivity Hypothesis. The integration of typological
universals and grammatical representation is a significant advance in our
understanding of the nature of syntax.

However, there are a number of problems that arise with the semantic
map model in applying it to actual examples, and threaten to undermine
its theoretical value. First, it is not possible to scale up the analysis. Pub-
lished semantic map analyses have very few nodes in the graph structure.
For example, Haspelmath’s study of indefinite pronouns has only nine
functions; Stassen’s study of intransitive predication has five functions:
Croft’s study of parts of speech has nine functions (plus the two addi-
tional predication functions examined by Stassen); van der Auwera and
Plungian’s study of modality has eight core functions. Small conceptual
spaces can be analyzed by hand. But much typological research deals
with many more data points. Even with a small number of data points,
the best conceptual space is not easy to find by hand. For example, re-
examination of the data used for Haspelmath’s indefinite pronoun space
demonstrate that the link between the irrealis nonspecific and the condi-
tional functions is not necessary: every indefinite pronoun in Haspel-
math’s sample that includes those two functions also includes the ques-
tion_ function.,

A related problem is that there is no means to deal with exceptions, or
more accurately, to measure the fithess of a particular conceptual space
model with an array of crosslinguistic data. The assumption is that the
fit must be perfect. But as we will see below, a perfect fit is not the usual
state of affairs for models of complex human behavior (including lan-
guage), and in fact a model with a perfect fit may be theoretically less in-
formative than a model with a high but not perfect fit.

" Most seriously, the semantic map model itself is not mathematically
formalized. Although it is regularly referred to as a ‘space’, it is not a Eu-
clidean model but a graph structure. No interpretation is possible of the
spatial dimensions of the representation, only of the graph structure
{Haspelmath 2003; 233). Constructing a conceptual space is done by
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hand, and has not been formalized, let alone automated. C:mozssmﬁ.,o_u:
it is not clear whether the semantic map model can be automated in a
computationally tractable algorithm. Tt w@ﬁammm that the Eo.goa of find-
ing the conceptual space with the SE_BE.:B&BUQ of rnwm.smgmms
nodes for a given set of cross-linguistic data is akin to the traveling sales-
man problem, which is known to be NP-hard. N
Fortunately, there is a mathematically Enz,:.cmnawﬁowa, computation-
ally tractable model of similarity relations that is used in other E.m.snram
of the social sciences, multidimensional scaling. The use of multidimen-
sional scaling in the analysis of crosslinguistic universals m:wém us to pre-
serve the theoretical insights of the semantic map model without the at-

tendant problems.

3. Multidimensional scaling as a representation of similarity in
parliamentary voting and grammatical analysis

Multidimensional scaling is one of a family of E:_ﬁ.?mimﬁ Bmz.aoam in-
cluding factor analysis, Guttman scaling (Guttman 1950), and :ﬂn re-
sponse theory (IRT; Rasch 1960; Birnbaum 1968); further background
can be found in Poole (2005, chapter 1). All of these Eo.ﬁwoam represent
&Bmml@ or dissimilarity of items as judged by :ﬁﬁ.mw._uﬂﬂmm. .mdw EXAIl-
ple, people are asked to judge how similar (or dissimilar) various coun-
tries are to each other. The (dis)similarities between the ow::ﬁ:om as a
whole are represented as distances between wo.msa. representing Eo oo:.s-
tries in a geometric space (the greater the mwﬁnmn@o the smaller the mnm-
tance; the greater the dissimilarity, the greater the a_mﬁs.oov. Hrwmm. Uo.:.:.m
form a SPATIAL MODEL that summarizes the similarities/dissimilarities
data. . . o
We focus here on the specific multivariate technique H.:mﬁ is a:moz.w ap-
plicable to the linguistic data described in §2. This technique is used in the
spatial theory of voting in political science (Poole and Wommﬁrm_ .Gmm,
1997; Poole 2005). We briefly explain the use of the mnwcm_ .B.wan_ n m.;w
spatial theory of voting before showing its relevance to :.smEm:m mw,&«m.a.
At the same time that psychologists were doing mE.a_@m of similarities

and preference using the early MDS techniques, vw.:_omov:mmmu econo-
mists, and political scientists were developing the spatial theory of voting
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{Hotelling 1929; Downs 1957). We describe the theory as applied to vot-
ing by legislators on parliamentary motions, for reasons that will become
clear below. In this case, legislators vote either “Yea’ or ‘Nay’ on a parlia-
mentary motion. In its simplest form, the spatial theory of voting can be
represented as a spatial model of legislators and parliamentary motions
where the legislators vote ‘Yea’ or ‘Nay’ depending on their political
orientation. That is, each legislator votes “Yea’ or ‘Nay’ depending on
whether such a vote is “closest” to his/her political orientation. That is,
we can construct a spatial model of legislators and parliamentary motions
which is a visual representation of the spatial theory of voting.

A spatial model can be used only if the data being modeled can be ap-
propriately represented as similarity data. That is, the points in the spatial
model — in this case, legislators and policy motions — must be interpret-
able as the same kind of thing. This is possible for voting. Each legislator
can be thought of as having a political stance, €:g. conservative or liberal
to some degree on the popular left-right dimension. A legislator’s political
stance is modeled as his/her IDEAL POINT in the spatial model. Likewise,
one can think of a “Yea’ or ‘Nay’ vote on a specific motion such as the
US Civil Rights Act of 1964 as each representing a political stance: a
‘Yea’ vote is somewhat biberal, and a ‘Nay’ vote is fairly conservative.
The ‘Yea’ vote and the “Nay’ vote are each represented by policy points
m the spatial model. In a perfect spatial model, a legisiator always votes
for the policy point closest to his/her ideal point: if the “Yea’ policy point
is closer to the legislator’s ideal point that the ‘Nay’ policy point, then the
legislator votes “Yea’ on the parliamentary motion. The trick, of course,
is to model voting behavior of many legislators on many patliamentary
motions in such a way that the spatial model accurately represents or pre-
dicts how legislators voted on all the parliamentary motions in the voting
session. This is where the multidimensional scaling algorithms come into
play. We describe here the spatial model produced by the algorithm and

-its interpretation (the full mathematical details are found in Poole 2005,
chapters 2-3). . .

Figure 3 {from Poole 2005: 31, Fig. 2.7) illustrates the ideal points for
twelve legislators and the “Yea’ and ‘Nay’ votes for one parliamentary
motion in a two-dimensional spatial model, i

This fictional example is a perfect spatial model, at least for this parlia-
mentary motion. Figure 3 shows that from the ideal points of the two
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Figure 3. Twelve Legislators in Two Dimensions

outcomes of the parliamentary motion (Oy and O, for Jwaw, and ‘Nay’
respectively), one can construct a line that divides the legislators sﬂrou
voted “Yea’ from those that voted ‘Nay’ (the legislators are E@Qoa Y
and ‘N’ respectively). This line is called the CUTTING LINE and is the per-
pendicular bisector of the “Yea’ and ‘Nay’ policy mozzm“ ﬁ_mﬁ 1s, the cut-
ting line is the line formed by all points that are oﬂs_.ﬁ:mﬂ:._ from H._.a
Yea’ and ‘Nay’ policy points of the parliamentary motion in the mm_m:mm
model. Hence legislators on one side of the line are closer to the ‘Yea
policy point, and legislators on the other side of the line are closer _.“o. the
‘Nay’ policy point. (In a one-dimensional model, a nc,ndzm. m.on,_., divides
those voting ‘Yea’ from those voting ‘Nay’; in a three-dimensional or
higher-dimensional model, it is a cutting plane or hyperplane.) >ﬁ:m:ur
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any points on the normal vector that are equidistant from the normal vec-
tor’s intersection with the cutting line can function as Oy and Oy,. In the
analysis of voting behavior, the cutting line (point, plane) is the crucial
element, since for any roll-call vote we are interested in who voted ‘Yea’
and who voted ‘Nay’.

The spatial theory of voting is an almost perfect match to the theory
underlying the semantic map model for the analysis of language univer-
sals. Taking the table of Romanian indefinite protioun data in 1, we have
meanings (functions) in the place of legislators, and grammatical category
judgements (used for that meaning [Y’] vs. not used for that Emminm
['N’]} in the place of parliamentary motions. One can think of it as lin-
guistic meanings “voting” for whether the grammar allows the word,
morpheme or construction to be used to express them or not. That is,
one of the crucial similarities between the application of MDS to parlia-
mentary voting and to grammatical analysis is the binary, nonparametric
(unmeasured) nature of the data.

In order to use a spatial model, the data must be representable as simi-
larity data. This might not seem obvious for crosslinguistic grammatical
analysis, where we are comparing grammatical forms to their functions
or meanings. But forms can be characterized by the range of functions
they are used for, as in the case of indefinite pronouns in §2. This fact al-
lows us to define a similarity relation between grammatical forms and
their functions.! .

Int the linguistic example, a function or meaning represents a situation
type which is its ideal point in the spatial model. Parallel to parliamentary
motions, the grammatical forms have two jdeal points in the spatial
model, corresponding to the Y’ and ‘N’ positions in the Romanian indef-’
inite pronoun table in 3. From a spatial model of the ‘Y” and ‘N’ points for
a given language-specific grammatical form, a cutting line is constructed

' However, not all crosslinguistic universals are suitably accounted for in terms of a simij-

larity model. For example, word order behavior displays complex variation across lan-
guages but it does not appear that word order universals should be explained in terms of
similarity. Rather, occurrence of one order (e.g.. genitive-noun order) correlates with an-
other erder (e.g., noun-adposition order), in highly complex ways, and there are no prop-
erties that cross-cut orders. Justeson and Stephens (1990) use log-linear analysis to iden-
tify relationships holding between pairs of word orders.
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which separates the functions that can be expressed by the grammatical
form from the functions that cannot. The cutting line correspends to a se-
mantic map in the semantic map model, that is, the boundary between
functions that are part of the category and functions that are not. Hence
the .%m:m_ meodel is a conceptual space, a space of functions or situation
types (cortesponding to the legislators), as in the semantic Emﬁ._doam_,
and the cutting line corresponds to the language-specific semantic map,
or category boundary, that distinguishes the functions that make up the
meaning of the grammatical category.

For example, we can reinterpret Figure 3 as a representation of a con-
ceptual space of linguistic functions and a single semantic map for one
language-specific grammatical form. The points labeled Y are the ideal
points for the functions expressed by the grammatical category defined by
the language-specific form. The points labeled ‘N’ are the ideal points for
the functions not expressed by the grammatical category. The points Oy
and O, represent ideal points for the grammatical category, and define
the boundary of the grammatical category — the cutting line or semantic
map. As noted above, the cutting line is the critical defining feature; Oy
and Oy, can be any points on the normal vector equidistant from its inter-
section with the cutting line. Hence Oy cannot be considered a prototype
of the grammatical category. The spatial model is consiructed on the
basis of the grammatical category boundaries (the cutting lines), not on
their prototypes (see also §6). This practice is again identical to the
semantic map model.

The trick is to model the cutting lines for many grammatical forms
across many languages for many functions in a single spatial model.
This is where MDS becomes useful for crosslinguistic grammatical analy-
sis. If there are language universals in the domain being investigated, we'
would expect to find a spatial model with few dimensions, with a very
good degree of fit to the crosslinguistic data. If there are no language uni-
versals in the domain, no low-dimensional model with a very good degree
of fit will be found. In all the domains we have explored with substantial
crosslinguistic data, including several not reported here, we found a low-
dimensional spatial model with a very good degree of fit.

As in the semantic map model, the conceptual space modeled by MDS
is hypothesized to be the same for all speakers, but the cutting lines (se-
mantic maps) in the conceptual space vary from language to language
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and from consiruction to construction. The multidimensional scaling
model allows one to identify what aspects of conventional grammatical
knowledge of an individual speaker are attributable to universal ﬁi.ﬁﬁ-
ples that are valid across languages. The structure of the conceptual space
can be intepreted as representing semantic or functional categories and
dimensions relevant to grammar.

The.number of dimensions on an MDS display is significant, and is not
an a priori choice on the part of the analyst. Instead, the number of di-
mensions depends on the properties of the data. The best number of di-
mensions to model the data is essentially the number of dimensions after
which the addition of further dimensions yields much smaller improve-
ments in fit (see Borg and Groenen 1997, Chapters 3 and 4). The addition
of higher dimensions reduces the informativeness of the spatial model, be-
cause more dimensions allows more points to be close to each other. In a
model with as many dimensions as grammatical forms in the data, for ex-
ample, one will automatically get perfect classification: each dimension
will group the functions expressed by a corresponding grammatical form.
Buti it would be completely uninformative (compare Levinson et al. 2003:
499, fn. 7).

Poole uses two fitness statistics to measure goodness of fit in his
MDS algorithm. The first is correct classification of the data, that is
whether the cutting lines correctly separate Y and N values. The mmou
ond statistic is the aggregate proportional reduction of error (APRE).
The APRE can be thought of as the degree to which the model devi-
ates from the null hypothesis, that is, how different the model is from al-
ways placing the cutting line at one end of the space (that is, all functions
are categorized with the majority category, whether the majority category

is Y’ or 2 for the grammatical form in question). The formuila for
APRE is: .

Total tokens in minority category — total errors
Total tokens in minority category

@)

Poole’s algorithm is a nonparametric binary unfolding algorithm. That
is, it takes the binary Y/N values of data like the Romanian distribu-
tional data in (1), and uses it directly to construct the %NEN_ model. The
vast majority of MDS analyses use a dissimilarity algorithm, which does
not use data like (1) directly but instead constructs a matrix of pairwise
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comparisons of all the functions, determining (dis)similarity by the num-
ber of forms that share the functions compared. Not only is construct-
ing the pairwise comparisons for a dissimilarity MDS algorithm time-
consuming, but information is lost in the process of constructing the
pairwise comparisons. This is a particular problem for data that is Top-
sided, where (in the linguistic mvv:nmao& grammatical forms are used
for either very few or almost all functions; in this case, the dissimilarity

-values will all bg very close. For example, Levinson et al. (2003) use a

dissimilarity &mo&%ﬁ on their crosslinguistic data for spatial adposition
uses, and the resulting spatial model was only partially semantically co-
herent. We reanalyzed their data using Poole’s unfolding algorithm (we
are grateful to Sérgio Meira for sharing with us the data files and fitness
statistics for their MDS analysis). Space considerations prevent us from
giving detailed results here, but the resulting spatial model had a higher
goodness of fit to the data, and lent itself to a semantically more coherent
interpretation. Poole’s algorithm is thus particularly well suited to linguis-
tic data.

MDS differs from two other common multivariate technigues used in
psychological and social science research, factor analysis and principal
components analysis (PCA; correspondence analysis, used by Majid et al.
[2004], is of this type). Both MDS and factor analysis/PCA appear to
produce low-dimensional spatial representations of high-dimensional
variation. Low-dimensional spatial models produced by MDS differ
from low-dimensional representations of the most important dimensions
of a factor analysis/PCA. The Jow-dimensional spatial model produced
by MDS is intended to capture ALL of the variance in the data (subject
to goodness of fit) in the one, two or three dimensions represented. In
contrast, the first few dimensions of a factor analysis or PCA do not
attempt to capture all of the variance, just a large proportion of it.
The latter do not represent a reduction of the observations to a lower-
dimensional representation, but a reorganization of the observations into
a representation using the same number of dimensions as the beginning
set of variables — in the linguistic case, the language categories — with
the dimensions completely uncorrelated with each other, and with the
dimensions ranked by the degree of variance in the data that they ac-
count for (these are called eigenvalues). MDS conceives of the data as
relational, modeled by Euclidean distance in a lower-dimensional space,
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whereas factor analysis and PCA conceive of the data as a matrix of
real numbers and try to extract eigenvalues and eigenvectors from the
matrix.

Two significant consequences follow from these differences. First, an
MDS analysis can be performed with different numbers of dimensions
(one, two, three, and so on), and fitness tests can be used to determine
which of these low-dimensional spatial models best fits the data. In a fac-
tor analysis/PCA, each additional dimension captures a certain amount
of the variance in the data, and adding a dimension increases the amount
of variance explained. Second, spatial models produced by MDS are in-
variant with respect to translation or rotation. In factor analysis and prin-
cipal components analysis, each dimension’s axis is fixed, representing the

proportion of variance in the data captured by the factor/component in

question. More generally, MDS models directly model similarity in the
data by distance in the spatial model. Factor analysis/PDA only extracts
eigenvectors from the data. One can plot the values of the eigenvectors
spatially, but factor analysis/PDA does not directly model similarity by
Euclidean distance.

4. Comparing MDS and semantic maps: indefinite pronouns

Multidimensional scaling produces a spatial representation of similarity.
As applied to linguistic phenomena, it produces a spatial representation
of &B:maa\ for a set of functions as determined by their grouping under
a single word form or construction in a language, generalized across dif-
ferent forms and across different languages. In this respect, it looks very
much like the semantic map model. In this section, we compare Haspel-
math’s semantic map analysis of indefinite pronouns to an MDS analysis
of the same data.

. Haspelmath’s conceptual space for indefinite pronoun functions was
given in Figure 1, and the semantic maps for Romanian indefinite pro-
nouns in Figure 2. Haspelmath’s book contains semantic maps for 40 lan-
guages (Haspelmath 1997a, Appendix A). In this sample, there are no
classification errors, that is, the semantic map for every indefinite pro-
noun in the language sample is mapped onto a connected subgraph in
the space. The conceptual space is laid out in an approximately linear
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Figure 4. Tweo-dimensional model of indefinite pronouns

fashion, but the rightmost functions (direct negation and free choice) are
unlinked (see Figure 2).

Figure 4 is a two-dimensional MDS analysis of Haspelmath’s data {we
are grateful to Martin Haspelmath and Dorothea Steude for providing us
with the file containing the data).

The data forms a 9 x 139 matrix: there are nine indefinite pronominal
meanings mapped, using data from 139 pronouns in the 40 languages.
The fitness statistics leave no doubt that a two-dimensional model is best:

(3) Dimensions Classification APRE

1 90.8% .685
2 98.1% . 934
3. 100.0% 1.000




16 William Croft and Keith T. Poole

In two dimensions, there are only 24 errors across 1250 data points. Al-
though a three-dimensional model gives a perfect classification, it is actu-
ally not as good a model because it is much less constrained than a two-
dimensional model, and adding the third dimension leads to only a 1.9%
improvement in classification.

The cutting lines for the Romanian indefinite pronouns (see Figure 2)
are given in Figure 5:
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Figure 5. Cutting lines jor Romanian indefinite pronouns

The cutting lines correspond to the semantic maps for each Roma-
nian indefinite pronoun set found in Figure 2. As noted in §3, cut-
ting lines bisect the space and must be linear in a Euclidean spatial
model. -
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As might be expected from data that is very well-behaved in the seman-
tic map model, the MDS display is highly structured. For comparison,
the graph structure of Haspelmath’s semantic map analysis is superim-
posed on the MDS display in Figure 6:
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Figure 6. Spatial model with graph structurve of semantic map model

The points in the MDS mvm:m_ model are arranged in a curved horse-
shoe shape. This arrangement differs from the semantic map model, but
in the semantic map model, the geometric arrangement is arbitrary; only
the graph structure matters.

The horseshoe pattern is a commeon result in MDS {Borg and Groenen
1997). It represents a basically linear representation. To understand
why the representation is curved, consider the one-dimensional model,
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corresponding to an implicational hierarchy A < B < C < D (Croft 2003,
chapter 5). A culting point in the one-dimensional model requires all of
the points on one side (say, A and B) to be “in” the category, and all the
points on the opposite side (C and D) to be “out” of the category. How-
ever, the indefinite pronoun space does not work this way. Pronouns may
map onto a middle part of the scale. In Romanian, the vre- -un series of
indefinite pronouns is used for the question, conditional and indirect ne-
‘gation functions, but not functions at either end of the conceptual space.
Since the cutting lines are straight, the spatial model of indefinite pro-
nouns must be curved. In fact, no cutting line (semantic map) includes
the two ends of the horseshoe, ‘specific known’ and “free choice’. This
fact indicates that these form the ends of the curvilinear organization of
this conceptual space.

. The indirect negation ideal point appears to be problematic in the
MDS spatial model of indefinite pronouns: it is closer to the condi-
tional ideal point than one would expect given the semantic map anal-
ysis (see Figure 6). However, one can demonstrate that the ideal point
for indirect negation is not precisely positioned in the MDS spatial
model.

The positioning of the ideal points for the functions (parallel to the
legislators in the spatial model of voting) is approximated by the position-
ing of the cutting lines for the grammatical forms (parallel to the cutting
lines for votes on parliamentary motions). MDS is an approximation
method. The ideal points of the functions are arranged in such a way
that a line (in a two-dimensional display) will separate the ‘n’ and ‘out’
members of the category defined by the word or construction with the
least error, for each word/construction used in the data. The final display
is the result of successive approximations of the positions of the cutting
lines and the points. Poole’s Optimal Classification algorithm is designed
to maximize correct classification, that is, the accuracy of the categories
defined by the cutting lines. Actually, the intersection of all the cutting
lines define regions (called polytopes) within which the ideal point of the
function is located. If there are few cutting lines, those regions can be
large and the points could be anywhere in the region. With more cuiting
lines, the positions of the points is more precisely estimated.

Figure 7 presents all 139 cutting lines for the indefinite pronoun spatial
model, many of which are identical.
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Figure 7. Cuiting lines for indefinite pronouns

The position of eight of the meanings are quite precisely approximated.
The ninth meaning, indirect negation, is in an open polytope; its point
may occur anywhere further outwards in its polytope. If indirect negation
were moved further away in its polytope, then the absence of a direct link
between indirect negation and conditional meanings would be geometri-
cally more plausible. .

The example of the typology of indefinite pronouns shows that MDS
and the serhantic map model can represent essentially the same structure
of the conceptual space. This is partly because the theory behind the se-
mantic map modet and MDS is basically the same. The goal is to con-
struct a representation of complex similarity relations among a set of
functions, given empirical data of different groupings of those functions




20  William Croft and Keith T. Poole

within and across languages. However, there are some important repre-
mnmﬁmﬂona and computational differences between the two, and on the
ﬁ&ﬁ.:@w MDS provides a superior model of universals of grammatical
varmation.

MDS produces a Euclidean model of the conceptual space. Conceptual
sitnilarity is modeled in terms of Euclidean distance between points in the
representation. The semantic map model, despite its name, is a graph
structure. The semantic map ‘model is not a Euclidean model. Even
when projected onto one- or two-dimensional space, the actual positions
of the nodes on the projection is a matter of visual convenience. Concep-
tual similarity is modeled in terms of the number of links and intervening
nodes between two given nodes in the representation.

One consequence of the representational difference between MDS and
the semantic map model is that the model of the conceptual mvm.oo in
MDS is not discrete, at least beyond one-dimensional models. In the
MDS display in two dimensions (or higher), distance is significant. (In a
one-dimensional model with binary, nonparametric data of the sort used
here, only the relative rank order can be recovered; Poole 2005: 41-45.)
In the graph structure of a semantic map, the model conceptual space is
discrete: each node in the graph represents a discrete meaning or function,
and there is no significant difference in the length of links. (However, the

semantic maps representing the LANGUAGE-SPECIFIC categories are discrete -

in both MDS and the semantic map model. That is, the language-specific
omﬂomoaom have sharp boundaries: bounded regions in the semantic map
model, and cuiting lines/hyperplanes in MDS.)

This fact might suggest that MDS is inappropriate for the modeling of
semantic domains that appear to be best analyzed in terms of discrete fea-
tures. For example, Haspelmath proposes an explanation of the coneep-
tual space for indefinite pronouns in terms of five discrete semantic-
pragmatic features (Haspelmath 1997; 119-22). However, the Euclidean
model of conceptual space provided by MDS is only a spatial representa-
tion of information in the data. While MDS allows for the representation
of nondiscrete conceptual categories, it may still be appropriately inter-
preted in a non-discrete fashion. For instance, the MDS model of the in-
definite pronoun data has nine points representing the nine functions in-
vestigated by Haspelmath, and the points are spatially widely separated in
the model. Their spatial separation may represent conceptual discreteness,
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if there is no situation type whose linguistic expression would fill the inter-
vening space. Nevertheless, we should note that this may be an artifact of
Haspelmath’s data collection method, namely elicitation of abstract se-
mantic categories. When techniques with a larger number of data points
representing highly specific situation types have been used, such as with
Dahl’s (1985) tense-aspect questionnaire described in §5, or the picture
clicitation of spatial relations reported in Levinson et al. (2003), what at
first appears to be a discrete conceptual space is revealed to be a more
continuous structure in a conceptually meaningful spatial representation.
It is possible that a more fine-grained elicitation in the indefinite pronoun
domain might reveal a less discrete spatial model and a less discrete con-
ceptual structure.

" Fven if Haspelmath’s discrete analysis of the conceptual space underly-
ing indefinite pronouns is correct, MDS provides further information
about the structure of that space that is unavailable in the semantic map
model. For example, the links from the semantic map mode! superim-
posed on the MDS display in Figure 6 differ in their length. The longer
links represent functions less semantically similar, and the shorter links,
functions more semantically similar. For example, it can be seen that the
specific known and specific unknown indefinite meanings are closer to
cach other than any other pair of points in the spatial model for indefinite
pronouns. This fact can be interpreted as implying that Haspelmath’s fea-
ture ‘known /unknown to the speaker’ that differentiates the two types of
specific indefinites is not as significant as other semantic distinctions, such
as the feature of presence/absence of a scalar endpoint that distinguishes
the specific and irrealis nonspecific functions on the one hand and the
conditional, question and other functions on the other. This information
is not available in the standard semantic map model, in which length of
links is not significant. Thus, the spatial model of MDS contains more in-
formation about the underlying conceptual space than the semantic majp
model does, even in a discrete interpretation of that space. .

The MDS display does not have the graph structure of the semnantic
map medel, and so the MDS model cannot be directly translated into a
semantic map. However, geometric distance is a close analog to the graph
structure. Given that we know for example that the horseshoe arrange-
ment in Figure 6 represents a curvilinear structure, most of the links in
the semantic map model join points to their nearest neighbors along the
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horseshoe. While the MDS . display does not capture the links in the se-
mantic map model’s graph structure, the nearest-neighbor distance rela-

* tion in the overall spatial structure can be used as a starting point for
identifying links if one prefers such a representation. However, the se-
mantic map model works well only in the case of clearcut (i.e. nearly ex-
ceptionless) patterns of relationships among a small number of situation
types. In the case of less clearcut patterns of grammatical variation, and
in the case of a much larger number of data points, the distance relation
is a more powerful representation of conceptual similarity.

A further advantage of MDS over semantic maps as a tool for repre-
senting information about the conceptual space underlying linguistic cat-
egories is that the spatial dimensions of an MDS model are interpretable
as dimensions in the conceptual space. In MDS, the number of dimen-
sions for the best fit is determined by the structure of the data. The di-
mensionality of the display is critical in constraining possible relation-
ships between points (meanings or functions in-a linguistic application}.
One can provide a theoretical interpretation — in our case, a linguistic se-
mantic interpretation — of the dimensions of the Euclidean space in an
MDS model. The semantic map model’s spatial representation is a matter
of visual convenience, as noted above, without any theoretical signifi-
cance. No means has been suggested to restrict possible links between
nodes, comparable to the constraint by number of Euclidean dimensions
in MDS. . .

Last but not least, the semantic map model is mathematically not well .

defined and computationally difficult to implement beyond very small da-
tasets. MDS, on the other hand, is mathematically well defined, and pow-
erful algorithms are available to analyze large amounts of data using cur-
rently available computing power.

5. Using MDS on large datasets: tense and aspect

Our second example demonstrates the ability of MDS to analyze a very
large and complex dataset which is virtually impossible to analyze by
hand or by simpler algorithms, and to infer language universals that
othérwise cannot easily be inferred if at all. The example is a very large
dataset of tense-aspect constructions collected by Dahl (1985). (We are
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grateful to Osten Dahl for generously providing us with the original data
files, answeting many questions about format and coding, and in checking
data against the original questionnaires, collected over two decades ago.)

Dabl designed a questionnaire with 197 sentence contexts in order to
elicit tense and aspect constructions. Some contexts included two or three
different verbs whose tense-aspect construction was coded. Dahl coded
the verbs in a single context with an additional digit, so that, for example,
context 1892 represents the second verb coded for sentence 189. There
were a total of 250 contexts (for the contexts, see Dahl 1985: 198-206).
Dahl obtained questionnaire results for 64 languages, collected by native
speakers or field workers (for the list of languages and sources, see Dahl
1985: 39-42). The data were coded by the construction employed in each
language (that is, the construction codes are specific to the particular lan-
guage). If more than one construction was considered acceptable or com-
mon, then all constructions were considered options for that verb context.

The codes represent the combination of tense-aspect constructions for a
particular language. For example, a Modern Arabic Copula combined
with Imperfective is coded ‘K1°, while the Imperfective found in any
verb is coded ‘1°. Thus, Copula -4 Imperfective is treated as a completely

distinet construction from Imperfective. It is in principle possible to split

the codes, so that for example a code ‘1” would cover Imperfective with or
without Copula, and a code ‘K’ would represent the copula. However,
splitting the codes would be an extremely time-consuming and complex
task, and the data file includes codes for constructions other than those
discussed in Dahl (1985), whose identity would not be easily recoverable
after two decades (Dahl, pers. comm.). Fortunately, it turned out that the
results with the combination codes were sufficiently robust that splitting
the codes became unnecessary for the purposes of this paper. ,
The best analysis for the data is a two-dimensional configuration:

(4} Dimensions Classification APRE

1 94.4% 272
2 96.0% 396
3 97.0% 462

The matrix of data is 250 x 1107. We used a threshhold of 0.5%, that is, a
construction had to be used for a minimum of two contexts in order to be
included. This is an extremely low threshhold; even so, 726 constructions
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of a total of 1833 were not used. The data is extremely lopsided: the aver-
age MAJORITY MARGIN (the proportion of points on the majority side of
any cutting line) is 94.4%. Because of the high majority margin, there is
a high proportion of correct classification of this data even with a rela-
tively low APRE. ‘

Because this dataset is large, we can also apply powerful parametric
methods based on the standard IRT model (Fischer and Molenaar 1995;
Poole 2001). We used a two-parameter IRT model in two dimensions.
The estimated dimensions were essentially the same as produced by the
nonparametric method (r? between the corresponding first dimensions is
.94 and 7? between the corresponding second dimensions is .89).

We then compared the results of the MDS analysis with Dahl’s original
analysis. Dahl posited a series of crosslinguistic prototype semantic tense-
aspect categories, defined by a cluster of verb contexts. Dahl began with
his presumed crosslinguistic tense-aspect categories and used a clustering
program to confirm the prototypes (disconfirmed prototypes were aban-
doned) and to identify the clusters of contexts and the language-specific
categories associated with each cluster. Dahl’s prototypes are listed in
(5), with the one-letter codes we use below, and the total number of con-
texts that Dahl identified as belonging to the cluster.

(5) Dahl’s tense‘aspect prototype clusters.
Tense-Aspect Prototype Code Cluster-size

Experiential X 10
Future U 45
Habitual - H 13
Habitual Past S - 5
Habitual-Generic G 14
Past Imperfect R 43
Perfect F 67
Perfective v 135
Pluperfect L 29
Predictive D 7
Progressive 0 35
Quotative Q 10

Dahl did not propose crosslinguistic ﬁno,.ﬁoa%mm for Present or Past
tense or for Imperfective aspect, although he did propose a prototype for
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Past Imperfect. Dahl argued that these categories commonly function as
‘“default” categories in the sense that their application depends on the
non-application of some other category or categories’ (Dahl 1985: 63).
As a result, a number of contexts that semantically are Present (or at least
Nonpast) and/or Impetfective did not fall into any of Dahi’s prototypes;
we labeled these with an asterisk ().

Dahl ranked verb contexts for each prototype category according to
how many language-specific categories of the type (e.g., PROGRES-
SIVE) included that verb context. If the crosslinguistic prototype were
valid, then certain contexts would recur in many constructions across lan-
guages.. For example, a sample of the contexts for PROGRESSIVE is

given in {6) (Dah! 1985: 91):

(6) Rank no. No. of categories Examples
1 26 831
2 24 51
3 23 61
4 22 91 101 111
7 21 71121 1551
32 5 131 141 282 981

That is, 26 languages used a Progressive for context 831, 24 languages
used a Progressive for context 51, and so on; there is a three-way tie at
rank 4 for contexts 91, 101, 111, and the lowest ranked contexts were
those where a Progressive is used in only five languages.

The contexts — each a single data point in the MDS display — were as-
signed a one-letter code reflecting Dahl’s crosslinguistic prototypes. The
contexts were divided into two groups, core (at or above the median
rank in the prototype) and peripheral (below the median rank). Core
and peripheral contexts are indicated by upper- and lower-case letters re-
spectively. Many contexts occurred in multiple prototypes. This is due to
the fact that some contexts are combination categories, for example a sen-
tence context such as future perfect would belong to both the future and
perfect prototypes; or that some contexts represent categories often in-
cluded in other prototypes, e.g. a context in the Habitual-Generic proto-
type is frequently also included in the Habitual prototype. Contexts listed
in multiple prototypes in Dahl (1985) were assigned to a single prototype
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by the following algorithm: (i} If the context is included in the core group
of one prototype and the peripheral group of another, it was assigned to
the prototype of the core group; we assume that core contexts are more
central to the crosslinguistic category. (if) If the context is included in the
core groups of more than one prototype, it was assigned to the prototype
with the fewest number of contexts; thus narrowly defined prototypes sur-
vive, while more broadly defined prototypes can be defined as supersets
including the more narrowly defined prototypes. As noted above, con-
texts which were not assigned to any prototype by Dahl were coded with
an asterisk.

These codes are displayed in the two-dimensional MDS model in
Figure 8.
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Figure 8.  Spatial model of tense and aspect with Dahl’s prototypes.
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The codes cluster extraordinarily well from a semantic point of view,
even though the data is extremely lopsided. However, the clusters do not -
always agree with Dahl’s posited prototypes. As might be expected from
their shared semantics, Perfective, Perfect and Pluperfect, and the small
prototypes Experiential (Perfect) and Quotative cluster together on the
right hand side of Figure 8. This is a spatiaily large cluster, with a fair de-
gree of separation of the functions that Dahl used for elicitation. The Per-
fective sentences form the upper right vertical slice of the cluster, with the
Quotative near the center of the vertical area. All of the core Quotative
contexts are also core Perfective contexts. The Quotative contexis do not
form a subcluster within the Perfective cluster; but they are so few that

" one should not infer too much from this fact.

The Pluperfect, Perfect and Experiential functions identified by Dahl
form the lower left of the cluster, but are partially separated in the order
given, from left to (lower) right. In fact, the contexts forming the core of
Pluperfect, Perfect and Experiential in Dahl’s analysis overlap to a great
extent, and overlap with both core and peripheral contexts for the
Perfective. The upper part of the cluster (0.4 > y > —0.05) is solely core
Perfective (including Quotative). The middle part of the cluster
(—=0.05 > y > —0.4) contains contexts that are both core Perfective and
peripheral Perfect, shifting to core Pluperfect and Experiential con-
texts towards the left on the x axis. The lowest part of the cluster
(=04 >y » —0.7) is almost entirely contexts that are both core Perfect
and either core or (mostly) peripheral Perfective.

The Perfect is well known as a difficult category to analyze semanti-
cally. The Perfect is generally analyzed as discrete from the Perfective
(Dahl 1985 138-39). The MDS analysis bears out this view on the

“ whole: Perfective and Perfect are mapped into separate areas. However,

they are not as separated as some of the other functions. Dahl notes the
restriction against using specific time adverbials with the Perfect in many
but not all languages, (e.g., English *I have met your brother yesterday).
The contexts intended to test this hypothesis (1411-1441) occur in the
middle part of the cluster, closer to Perfective contexts.

Dahl discusses the four functions of the Perfect identified by McCawley
(1971). The central contexts for the Perfect are those described by
McCawley as ‘current relevance” and ‘experiential’; Dahl distinguishes Ex-
periential as a separate prototype. In the MDS spatial model, experiential
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contexts are very close if not intermingled with current relevance con-
texts. The “universal’ or ‘persisting situation’ (Comrie 1976: 60) function
of the Perfect is often expressed by a Preseit or Imperfective form, and
context 1481 (English He has been coughing for an hour) is grouped in
the Present /Imperfective cluster (described below) in the spatial model,
not the Perfect /Experiential cluster. Finally, the best example of the ‘hot
news’ meaning in Dahl’s contexts (1331, English The king has arrived as
an :bmxwanﬁom event), is included in the Perfect /Experientia] cluster.

Future and Predictive also cluster, again not surprisingly. Dahl had
posited a small Predictive prototype. The spatial arrangement of Future
and Predictive suggests that Predictive is a fairly central subtype of Fu-
ture. In Dahl’s analysis the core Predictive contexts are also all core Fu-
ture contexts. The Future cluster is also separated into two parts, which
correspond remarkably well to the core and peripheral Future contexts
as defined above. The core Futures are mostly predictive and intentional,
or the consequent clause of “if >, ‘when’ and ‘whenever’ clauses, while the
peripheral Futures are generally the antecedent clause of ‘if >, ‘when’ and
‘whenever’ clauses. (The three * points in the peripheral Future region all
have future time reference.) The time reference of the consequent clause is

- future relative to the time reference of the antecedent clause, hence those
contexts cluster with predictive and intentional clauses which have future
time reference. The time reference of the antecedent clause is irrealis. As
such the antecedent clause context resembles that of the future in that the
future is itself irrealis: ‘when we tallk about the future, we are either talk-
ing -about someone’s plans, intentions or obligations, or we are making a
prediction or extrapolation from the present state of the world’ (Dah]
1985: 103). Nevertheless, the relative time reference of the antecedent
clause is taken as the reference point for the time reference of the conse-
quent clause, and for that reason the antecedent clause is more like pres-
ent time reference; hence these petipheral Future contexts are close to the
Present contexts.

Another difference between the clusters in the MDS analysis and those’
posited by Dahl involves the status of the Present and Imperfective. Dahl
treated the Present and Imperfective as default categories, without a pro-
totype (see above); most sentences of this type are * in Figure 8. In fact,
most of the members of the * caiegory cluster with Progressive (and also
Habitual and Habitual-Generic; see below). All but two of the asterisked
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contexts in this cluster have present time reference and imperfective or
stative aspect; the remaining two are habitual. In other words, there is a
cluster for Present Imperfective functions, contrasting with both Past Tm-
perfective and (general) Perfective (which is instead associated with Per-
fect functions).

Habitual contexts are split according to tense: the Habitual Past
contexts cluster with the Past Imperfect contexts,” and the Habitual and
Habitual-Generic cluster with the Progressive and Present-Tmperfective
functions. In other words, the Habitual Past is closer to the Past Impei-
fect than to the general Habitual, and Habitual is closer to the Progres-
stve than to the Habitual Past. This result differs from Dahl’s analysts, in
that Dahl posited a series of small Habitual prototype categories {Ha-
bitual, Habitnal-Generic, Habitual Past) alongside the broader Progres-
sive and Past Imperfect categories. Dahl also notes that language-specific
Progressive and Habitual categories rarely overlap (Dahl 1985: 93), al-
though the Imperfective category often subsumes both Progressive and
Habitual contexts. Since habitual meaning is also Imperfective, the clus-
tering of Habitual with the respective Past and Nonpast/Present func-
tions reinforces the major division as Past Imperfective and Present
Imperfective.

The two dimensions of the MDS space are quite clear, and are indi-
cated on Figure 8 (recall that MDS models are invariant under transla-
tion and rotation). One dimension, at about a 30° angle clockwise from
the ¥y axis, 1s tense, ranging from Past (including Past Habitual) and Per-
fective at the upper right to the Future at the lower left. The Habitual,
Habitual-Generic and Progressive are found in the middle of this scale;
they are not differentiated for tense unlike the contexts at the two ends
of the dimension. The Perfect, Experiential and Pluperfect are also found
in the middle of this scale. The Perfect, including the Experiential, are
generally (though not always) analyzed as past events that are relevent
to the current state. That is, the Perfect and Experiential are asserting
something about the current state as well as the past event, and for this

2 The contexts labeled O (Progressive}, H (Habilual) and Q {(Quotative} in the Past Imper-

* fective cluster are also core members of the Past Imperfect cluster; they were labefed

O/H/Q because there are morve Past Imperfect contexts than Progressive, Habitual or
Quotative ones (see condition (ii) of the algorithm for assigning codes).
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reason, they are associated with the Present tense in the middle of this di-
mension. The Pluperfect also occurs in the middle of the scale, but closer
to the past end of the dimension than the Perfect/Experiential. Most of
the Pluperfect contexts are the consequent clauses of ‘before’ and ‘when’
complex sentences with past time reference. These report events which are
mostly relatively recent with respect to the past reference time provided
by the ‘before’ or “when’ clause. The remaining Pluperfect contexts ap-
pear to describe current relevance of a past event which had been reversed
(e.g. 611, English Had you opened the window [and closed it again J? when
©a room Is cold). It is possible that the current retevance and relative re-
cency of the event with respect to the reference time positions Pluperfect
closer to the middle of the tense dimension than most (but not all) Perfec-
tive uses. The other dimension, perpendicular to the first, is aspect, rang-
ing from an general Imperfective (including Habitual} at the upper left to
Perfective /Perfect on the lower right. .

The spatial model supports Dahl’s analysis of the relationship between
“Present”, “Aorist” and “Imperfect” in the traditional terminology (Dahl
1985: 81-84). Dahl notes that Comurie’s discussion of these categories
{Comrie 1976; 71) suggests a primary distinction of tense between Present
{which is Imperfective by definition) and Past, and a secondary distinc-
tion in the Past between Aorist (perfective) and Imperfect (imperfective).
Dahl argues that there is a primary distinction of aspect between Perfec-
tive and Imperfective, with a secondary distinction between Present and
Imperfect. He supports his view with the observation that sometimes Per-
fective is not specifically Past (as implied by the analysis attributed to
Comurie), and with patterns of morphological similarity in tense-aspect
paradigms of specific languages.

In the spatial model, Past Imperfect is clearly separated from the Pres-
ent Imperfective contexts clustered at the upper left. The two clusters are
found in discrete positions on the tense dimension but a common position
in the aspect dimension. In contrast, Perfective is separate from the two
clusters in the aspect dimension, but spread out in the tense dimension
(though oriented towards the past). This distribution implies that Perfec-
tive is a discrete category not necessarily restricted to past tense, while the
Past Imperfect is clearly separated from the Present/Imperfect contexts.

Our last observation is that Future is relatively neutral with respect to

the aspect dimension. Thus is it not accurate to analyze the Future as
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either a complete or incomplete event because the future state of affairs
holds only in a non-real world or mental space.

One final conclusion that can be drawn from the MDS analysis of
Dahbl’s tense-aspect data is that the traditional semantic and grammatical

~ division between tense (deictic time reference) and aspect (how events un-

fold over mi@ is empirically valid, despite the fact that some languages
combine tense and aspectual semantics in a single grammatical marker
or construction. This division emerges despite the fact that the input
data to the MDS analysis preserved those tense-aspect combinations.

6. Conclusion: language universals, variation and acquisition

Multidimensional scaling, in particular the unfolding model we have ap-
plied here, provides a mathematically well-founded and powerful tool for
deriving language universals from grammatical variation. MDS offers a
number of significant advantages over semantic maps, both in particulars
(such as the ability to interpret distance and dimensionality in the Eucli-
dean spatial model) and in the general mathematical and computational
tools for MDS that have been developed over many decades.

From a linguistic theoretical point of view, MDS fits very well into ty-
pological theory. In typological theory, language universals are based in
the conceptual organization of the mind, as represented by the spatial
model resulting from MDS analysis. Yet the great range of language-
specific grammatical diversity that has been observed in empirical re-
search across languages is allowed, as part of the semantic maps/cutting
lines which represeni grammatical distributional patterns mapped omnto
the conceptual space. The success of MDS in inferring grammatical uni-
versals as illustrated in this paper suggests that further applications of
MDS to the analysis of crosslinguistic variation will lead to the discovery
of further language universals, as well as the confirmation or revision of
previously established universais. .

The results of the MDS analyses performed by us, including several to
be described in future papers, suggest that in grammatical behavior,
greater regularity emerges from greater diversity. This fact argues against
both an extreme universalist and an extreme relativist theory of grammar.
In an extreme universalist theory, the basic structures of a langnage are
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fundamentally the mmEm,. and in fact can be inferred from data from a rel-
atively small number of languages, or even just one language. This theory

predicts that regularity in a low-dimensional spatial model would emerge -

in examining only a few, or even just one, language. Adding languages
would not change this picture; if anything it would create more noise in

the data. But in our MDS analyses, regularity only emerges when more-

constructions from more languages are added. In an extreme relativist
theory on the other hand, the basic structures of a language are funda-
mentally different from language to language. The examination of a small
number of languages would give a false sense of regularity that would
break down with the examination of more languages — that is, a low-
dimensional model would have a poor fit to data with a large number of
languages. This theory predicts that regularity in a low-dimensional
model might emerge in small datasets, but would disappear in large data-
sets. In fact, we have found that the opposite occurs.

The way that regularities — language universals — appear in MDS anal-
yses of grammatical variation within and across langnages demonstrates
that language universals exist, but they are not directly manifested as a
set of universal linguistic categories. Instead, language universals are indi-
rect. Language universals are constraints on grammatical variation, -and
grammatical variation is as necessary a part of language as the universals
are. For example, the clusters in the tense-aspect analysis in Figure 8 are
NOT universal grammatical categories. Rather, they are universal CONCEP-
TUAL structures relating the clustered situation types. The language-
specific grammatical categories are represented by the cutting lines. The
distribution of the situation types in the conceptual space represented by
the spatial model constrain the language-specific grammatical categories

- (compare Croft’s analysis of parts of speech- in Croft 2001, chapter 2).
Even ‘exotic’ language-specific grammatical categories conform to the
theory of language universals underlying a good-fitting spatial model;
they do not ‘go beyond the theory’ ( pace Levinson et al. 2003: 513). Nev-
ertheless, the discovery of universal conceptual structure via MDS anal-
ysis -of typological data does not entail the existence of universal gram-
matical categories. The cutting lines for language-specific categories may
in fact cut through the clusters of functions in the spatial model, This fact
incidentally demonstrates that the internal Euclidean structure of the
cluster also has grammatical and conceptual significance. Identifying the
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semantic values of the clusters and dimensions of the space, as we did for
Dahl’s tense-aspect data, only scratches the surface of the generalizations
captured by the spatial model.

The relative position and distance of points in the spatial model repre-
sent a conceptual organization, presumably the product of human cogni-
tion and interaction with the environment, that constrains the structure of
grammar. Thus, a complete understanding of the nature of grammar in-
volves not only the conceptual structures in-the spatial model (important
as they are), but also the detail of grammatical variation outlined for ex-
ample in Dahl’s monograph on tense and aspect. In fact, our MDS anal-
yses show that the discovery of language universals is essentially depen-
dent on extensive detailed studies of crosslinguistic and within-language
grammatical variation.

Our interpretation of the results of the MDS analysis of crosslinguistic
data can be compared to the model of conceptual spaces proposed by
Gérdenfors (2000). Gérdenfors argues for a geometric level of representa-
tion which is also called a conceptual space. Gérdenfors argues that ‘nat-
ural’ concepts are convex regions in a Euclidean conceptual space (Cir-
denfors 2000: 71; his principle P}. The convex regions can be defined in
terms of pearness to /distance from a prototype {specificaily, as general-
ized Voronoi tesselations; ibid., 87-88, 137-39). Gérdenfors proposes a
‘programmatic thesis’ that ‘most properties expressed by simple words in
natural languages can be analyzed as natural properties in the sense of
criterion P’ (ibid., 75-76).

Our mode! agrees with Girdenfors’ model! in the use of geometrical
representation models for concept categories. The clusters that emerge
from the MDS analyses of spatial adpositions and tenise-aspect construc-
tions also appear to be convex regions in the spatial model. But Girden-
fors’ programmatic thesis about the relationship between conceptual cat-
egories and linguistic categories is not borne out by the empirical studies
of linguistic categories. Linguistic category boundaries overlap each other,
within as well as across languages. Hence one must use a model which
represents overlapping category boundaries, which cannot be predicted
from the prototype as Gérdenfors proposes. Yet in modeling linguistic
behavior, we actually use a' MORE restrictive model of linguistic catego-
ries than Gérdenfors: the categories must be linear bisections of the space,
not just convex regions. This is not to say that there is no validity to a




34 William Croft and Keith T. Poole

prototype analysis of grammatical categories, which often has great value.
It is only to say that a prototype model alone cannot give us an account
of category boundaries and the conceptual similarity information they
contain.

All of the linguistic datasets that we have analyzed (including some to
be described in future publications) are low-dimensional, in the same way
that MDS analyses of psychological and political behavier are low-
dimensional (see Shepard 1987 and Borg and Gronen 1997 for psychol-
ogy, and Poole 2005 for political behavior). We believe that this captures
a fundamental truth about human behavior. Human beings are able to re-
duce the immense complexity of the world, including their languages, into
a small, manageable number of conceptual dimensions and configura-
tions, typically just one or two. This implies two spaces — one with a few
fundamental dimensions and a second high-dimensional space represent-
ing all the distinct political issues, grammatical categories, etc. But the
constraints on the high-dimensional variability in thé world means that
the low-dimensional spatial model is a reasonably accurate model of
the world which can guide human behavior. In other words, the low-
dimensional model captures human behavior with respect to the complex-
ity of the world, not the complexity of the world itself {Cahoon, Hinich
and Ordeshook 1978; Hinich and Pollard 1981). The same applies to the
human conceptualization of the world as represented in mmsm.cmmo.

Finally, the structure of the data we have analyzed suggests a model of
how a child may learn a language (compare Gérdenfors 2000: 122-26). A
child develops a low-dimensional model of (dis)similarities between situa-
tions, presumably through a combination of innate abilities and interac-
tion with her environment. As the child comprehends linguistic expres-

- sions used to describe these situations, she begins to approximate the
cutting lines for the words and constructions of her language. As the child
is exposed to more and more linguistic expressions and the situations they
describe, the cutting line for each word or construction is more precisely
‘placed in the conceptual space. Moreover, the structure of the space and
the positioning of the cutting line allows the child to use the word or con-
struction for new situations that are similar in the right ways to the known
points on the right side of the word or construction’s cuiting line. In this
process, the child may produce ‘errors’ that are a consequence of a cutting
line slightly misaligned in comparison to the adult’s grammar. In this
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respect, a language grammar involves a set of hyperplanes representing.
the cutting lines of its words and constructions through conceptual space.

University of New Mexico
University of California, San Diego
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